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1. Introduction 
Overview. Over the past two decades, Arctic sea ice has 
experienced precipitous declines in extent and thickness, 
ushering in a new narrative for the polar marine environ-
ment. This loss of sea ice is perhaps one of the most visible 
large-scale changes on Earth’s surface connected to plane-
tary warming, with significant implications for the Arctic 
region and beyond. The response of Antarctic sea ice to 
climate change has been more complicated and less well 
understood. Advancing our ability to analyze, model, and 
predict the behavior of sea ice is critical to improving pro-
jections of climate change and the response of polar ecosys-
tems, and in meeting the challenges of increased human 
activities in the Arctic. Over the past decade or so, research 
on modeling sea ice and its role in Earth’s climate sys-
tem has blossomed, with fundamental contributions from 
many areas of applied and computational mathematics. 

Here we report on significant recent advances in sea ice 
modeling. We give a fast-paced account of a broad range 
of mathematical ideas, and key theoretical issues in the 
physics of sea ice, on scales from millimeters to thousands 
of kilometers. Modeling sea ice—a complex multiscale 
medium—presents formidable challenges. The mathemat-
ics discussed here, while developed for sea ice, often has 
broader applicability and provides insights into the anal-
ysis and modeling of other multiscale materials and sys-
tems. 
Earth’s sea ice packs in a changing climate. The sea ice 
covers of the polar oceans are a critical component of the 
global climate system. They are vast in areal extent, cover-
ing millions of square kilometers, but are only a thin ve-
neer of ice a couple of meters thick. Sea ice serves as both 
an indicator of change and as an amplifier of change. Con-
sider the Arctic sea ice cover. The amplification of global 
warming long predicted by models has come to pass. Ob-
servations show that the Arctic is warming at twice the 
rate of the rest of the planet. Satellite observations from 
the past four decades show decreasing ice extent in every 
month of the year, with the greatest losses occurring in 
September, at the end of the melt season. Indeed, there 
has been interest in predictions of when we might first see 
substantially ice-free summers. The sea ice cover has also 
undergone a fundamental shift from older, thicker, more 
resilient perennial ice to primarily younger, thinner, less 
resilient seasonal ice. This is clear evidence of a warming 
climate. 

Sea ice can also act as an amplifier of climate change 
through ice-albedo feedback. Snow covered sea ice is an ex-
cellent reflector of sunlight. As the ice retreats, it uncovers 
the highly absorbing ocean. More solar radiation is then 
absorbed, resulting in more loss of ice and more absorbed 
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sunlight creating a positive feedback loop. The end result 
is less sea ice and more planetary heating. Sea ice loss also 
influences the exchange of heat and moisture between the 
atmosphere and ocean, further impacting the climate. 

As we look toward the Southern Ocean and the Antarc-
tic sea ice pack, we find a different geographical context 
within which to consider a more complex response to plan-
etary warming. The Arctic is comprised of an ocean en-
circled by warming landmasses with declining spring and 
summer snow covers and reduced albedo. The Antarctic is 
a continent surrounded by ocean, geographically isolated 
from the rest of the world but connected through atmo-
spheric and oceanic pathways. With sea ice growth uncon-
strained by surrounding continents, we see high variabil-
ity in year to year ice extent, with strong influence from 
changes in wind and current patterns. 

Much of the Arctic sea ice pack still persists during sum-
mer. However, relatively little Antarctic sea ice, which 
forms at lower, warmer latitudes and is thinner, survives 
the melt season. While Arctic sea ice has seen sustained 
declines, Antarctic sea ice experienced over three decades 
of gradual increases in yearly extent, peaking in 2014, yet 
with some regions still registering notable declines. This 
period was followed by an overall decline so precipitous 
that three years later a record low for average coverage dur-
ing the 40-year satellite era was reached [S72]. Neverthe-
less, the long-term trend is nearly flat. In short, the plan-
etary warming signal has come through loud and clear in 
the Arctic, but has so far been more difficult to discern in 
the response of Antarctic sea ice [S89]. 
From microscale to macroscale. Viewed on almost any 
length scale, sea ice displays composite structure (Figure 
1). By holding a small piece of sea ice, careful inspection 
reveals the brine and air inclusion microstructure on the 
millimeter scale as well as the centimeter scale polycrys-
talline microstructure. Snow on top of sea ice is a highly 
variable granular material with grains on the millimeter to 
centimeter scale. From a helicopter the ice pack can be 
viewed as a composite of ice floes in a sea water host, with 
the frozen “inclusions” ranging in size from centimeters to 
tens of kilometers. Systems of leads or openings in the ice 
are fracture patterns that can extend hundreds of kilome-
ters. In late spring the Arctic sea ice surface is a composite 
of ice and small ponds which grow and coalesce to form 
kilometer scale, connected labyrinths of melt water. 

In modeling and predicting the behavior of the polar 
sea ice covers, one must keep in mind the overall scale of 
the system under study. In winter, the maximum areal ex-
tent of sea ice in the Arctic is about 15 million km2 , and 
about 18 million km2 in the Antarctic, or roughly 4000 km 
in linear extent. With grid spacings in large-scale models 
on the order of kilometers, or more likely, tens of kilome-
ters, it is not realistic to account for every brine inclusion, 
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𝜕𝑔 𝜕 = −∇ ⋅ (𝑔𝐮) + Ψ − (𝑓𝑔) + 𝐿, 𝜕𝑡 𝜕ℎ 

Figure 1. Multiscale structure of sea ice. From left to right: X-ray tomography of submillimeter scale brine inclusions; centimeter 
scale polycrystalline structure of sea ice; centimeter to meter scale pieces of newly forming Arctic sea ice; meter to kilometer 
scale melt ponds on the surface of summer Arctic sea ice; the Arctic sea ice pack can be viewed from space as a two-phase 
granular composite. For perspective, rough image sizes from left to right are 1 cm, 5 cm, 5 m, 100 m, 100 km. 

crystal grain, or floe in the model. The scales of interest for analysis, statistical mechanics, dynamical systems, and 
climate studies are far greater than these “microstructural” even random matrix theory. 
scales. Nevertheless, these features play an outsized role in 

      sea ice  2. Sea Ice Dynamics and Thermodynamicsdynamic and thermodynamic behavior. One of the 
fundamental challenges in modeling sea ice—and a cen- Physical processes acting on sea ice can be divided into 
tral theme in what follows—is how to rigorously account two categories: thermodynamic processes, which involve 
for the impact of the microscale on macroscale behavior. the transfer of heat or radiation, and dynamic processes, 

Most of the modeling ideas and techniques in the fol- which move and deform the ice. Regions of the sea ice 
lowing apply to sea ice around both poles. However, cover often include mixtures of open water, thin first-year 
there are certain topics that are traditionally more rele- ice, thicker multiyear ice, and thick ridges formed from ice 
vant to either the Arctic or the Antarctic. For example, floes breaking or colliding under convergent forcing. 
melt ponds are generally not observed on Antarctic sea A fundamental goal in sea ice modeling is to predict the 
ice. Grainy polycrystalline microstructures, often associ- evolution of the ice thickness distribution (ITD) in time 
ated with growth under more turbulent conditions or the and space [TRMC75, S112]. The ITD is influenced by hor-
formation of “snow-ice” on top of flooded sea ice, have izontal transport, ridging and other mechanical processes, 
typically been of more interest in studies of Antarctic sea and thickness changes due to thermodynamic growth and 
ice. Likewise, studies involving wave-ice interactions and melting. An essential aspect of sea ice thermodynamics is 
pancake ice, which forms in wavy conditions, have been the variation of growth and melting rates for different ice 
more focused in the Southern Ocean. However with Arc- thicknesses. Because heat conduction is proportional to 
tic sea ice receding, wave activity has increased, along with the vertical temperature gradient, thin ice grows and melts 
similar types of studies in the Arctic. more quickly than thicker ice, and is more likely to un-

The paper is organized as follows. We begin with an dergo mechanical deformation. 
introduction to the basic physics of sea ice—its dynamics The ice thickness distribution 𝑔(ℎ, 𝐱, 𝑡) gives the proba-
and thermodynamics—that has historically served as the bility 𝑔(ℎ)𝑑ℎ of finding ice in the thickness range (ℎ, ℎ+𝑑ℎ) 

2foundation for early modeling efforts, and still serves in at a given time 𝑡 and location x ∈ ℝ  , or the area fraction 
∞ 

this role today. Then we roughly follow the outline sug- covered by ice of this thickness, with ∫  𝑔(ℎ, 𝐱,  0 𝑡)𝑑ℎ = 1.
gested in Figure 1, where we move up in scale, starting The ITD equation is fundamental to any sea ice model, be-
from the material properties of sea ice and how they de- cause it integrates all of the physical processes that affect 
pend on the brine and polycrystalline microstructures. We ice volume: 
then consider mesoscale processes such as the formation 

(1)of leads and ridges, the evolution of melt ponds and floe 
sizes, and wave-ice interactions. Finally we look at the with 𝐮 𝜕 𝜕 

 the horizontal ice velocity, ∇ = ( , ), 𝑓 the rate 
macroscale—the rheology of the sea ice pack, large-scale 𝜕𝑥 𝜕𝑦 

of thermodynamic ice growth, Ψ a mechanical redistribu-
numerical sea ice models which are key components of 

tion function, and 𝐿 representing lateral melting. The four 
global climate models, the assimilation of data into these 

terms on the right describe: (1) horizontal transport in x, 
models, and low-order approximations of large-scale sea 

(2) transport of mass of 𝑔 in ℎ due to ridging and other 
ice behavior. Along the way we will touch upon a num-

mechanical processes, (3) transport of mass of 𝑔 due to 
ber of areas of mathematics and theoretical physics, includ-

thermodynamic growth and melting, and (4) replacing ice 
ing homogenization of partial differential equations, the-

with open water by lateral melt. Solving the horizontal 
ory of porous media, mechanics of materials, numerical 

transport and ridging equations requires 𝐮. 
analysis, percolation theory, stochastic processes, complex 

Although the ITD 𝑔(ℎ) is a function of a continuous 
variable ℎ, in practice only a few thickness categories are 
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tracked, typically between 5 and 20, with more categories 
assigned to thinner ice to better resolve growth rates. Ther-
modynamic transport of the mass of 𝑔(ℎ) needs the ice 
growth rate 𝑓 in each thickness category. The ITD equa-
tion is being generalized to include distributions of thick-
ness and floe size. In a significant recent advance, the ITD 
was treated as a Fokker-Planck equation for the probability 
density of a thickness diffusion process ℎ𝑡, with Ψ similar 
to a Boltzmann collision term [S103]. 
Dynamics. In order to simulate ice motion 𝐮, sea ice mod-
els generally include equations for the momentum, a con-
stitutive law that describes the material properties of the 
ice, transport, and mechanical deformation. These equa-
tions strive to represent the basic properties of ice motion: 
as a rigid material it resists convergent forcing, but it tends 
to be highly fractured and therefore diverges easily. If con-
vergent forcing is strong enough, the ice will break and 
form ridges and keels, often referred to as “ridging.” The 
deformation or rates of strain, which are spatial derivatives 
of the velocity components, control the amount of ridging 
and fracture, which in turn determines the amount of open 
water that is exposed to the atmosphere. 

The force balance per unit area in the ice pack is given 
by a two-dimensional momentum equation, obtained by 
integrating the three-dimensional equation with respect to 
the thickness of the ice in the vertical direction: 

𝑚 
𝜕𝐮 = ∇ ⋅ 𝝈 + 𝝉𝑎 + 𝝉𝑤 − 𝐶𝑚𝐤 × 𝐮 −𝑚𝑔∇𝐻, 𝜕𝑡 (2)

where 𝑚 is the combined mass of ice and snow per unit 
area and 𝝉𝑎 and 𝝉𝑤 are wind and ocean forces, respectively. 
The internal stress 𝝈 is given by a constitutive equation de-
scribing sea ice strength and rheology. The last two terms 
represent Coriolis effects and sea surface slope 𝐻, where 
here 𝑔 is gravitational acceleration. 

Ice area fraction, volume, energy, and snow volume and 
energy are advected horizontally. In addition, coupled to 
equation (2) are equations governing the transport of trac-
ers such as melt water and biogeochemical inclusions. 
Thermodynamics. Thermodynamic components of sea 
ice models treat the ice as a slab with energy fluxes at both 
surfaces, 

𝑞 
𝑑ℎ = 𝐹𝑠 + 𝐹𝑙 + 𝐹𝐿↓ + 𝐹𝐿↑ + (1 − 𝛼)𝐼0𝐹𝑠𝑤, 𝑑𝑡 (3)

where 𝑞 is the energy per unit volume required to melt the 
top surface material (either snow or ice), ℎ is thickness, 𝐹𝑠 
is the sensible heat flux, 𝐹𝑙 is the latent heat flux, 𝐹𝐿↓ is 
the incoming longwave flux, 𝐹𝐿↑ is the outgoing longwave 
flux, 𝐹𝑠𝑤 is the incoming shortwave flux, 𝛼 is the shortwave 
albedo, and 𝐼0 is the fraction of absorbed shortwave flux 
that penetrates into the ice. A similar relation holds at 
the bottom of the ice. The heat equation in the vertical 

direction for the interior temperature 𝑇𝑖 inside the ice is 

(4)

where 𝜌𝑖 is sea ice density, 𝑐𝑖 its specific heat, 𝑘𝑖 its (effec-
tive) thermal conductivity, and 𝐼𝑝𝑒𝑛 is the flux of solar radi-
ation penetrating to depth 𝑧 (downward positive). Heat ca-
pacity and conductivity depend on both salinity and tem-
perature. 

Some thermodynamic models treat sea ice as a mushy 
layer [S122,S24], a mixture of brine and ice, with enthalpy 
(or temperature) and salinity as prognostic variables. The 
enthalpy 𝑞 is related to the temperature 𝑇 and brine vol-
ume 𝜙 by 

𝑞 = 𝜙𝑞𝑏𝑟 + (1 − 𝜙)𝑞𝑖 
= 𝜙𝜌𝑤𝑐𝑤𝑇 + (1 − 𝜙)(𝜌𝑖𝑐𝑖𝑇 − 𝜌𝑖𝐿0), (5) 

where 𝑞𝑏𝑟 is brine enthalpy, 𝑞𝑖 is ice enthalpy, 𝜌𝑖 and 𝑐𝑖 are 
density and heat capacity of ice, 𝜌𝑤 and 𝑐𝑤 are density and 
heat capacity of brine, and 𝐿0 is the latent heat of melting 
pure ice. 

Many processes affect sea ice thermodynamics, includ-
ing interactions of long- and shortwave radiation with ice 
surface characteristics (snow, bare ice, melt water) and in-
terior layers, turbulent fluxes (evaporation, latent and sen-
sible heat fluxes, wind stress), heat fluxes and stresses from 
the ocean, and algal growth, which can darken the ice, de-
creasing the albedo. 

3. Sea Ice as a Material 
As sea ice grows from the freezing of sea water at −1.8 ∘ C 
and a typical salinity of 35 parts per thousand (ppt), brine 
is entrained in the ice. The volume fraction of brine in sea 
ice depends on the ice temperature and salinity, as well as 
the age and initial growth rate of the ice. The presence of 
this brine is a distinctive feature of sea ice. The amount and 
distribution of the brine affects all aspects of sea ice includ-
ing its electromagnetic, mechanical, and thermal proper-
ties [S116,S74]. 

The influence of the brine phase on the bulk material 
properties of sea ice depends strongly on temperature. In 
particular, in sea ice colder than, say, −15 ∘ C, the brine mi-
crostructure typically occupies less than 2% volume frac-
tion, and is segregated into submillimeter scale inclusions 
or pores which are largely disconnected and well separated, 
with diminished overall influence. However, as the tem-
perature warms toward around −5 ∘ C and above, long-
range order develops as the inclusions coalesce to form 
centimeter to meter scale connected structures, or brine 
channels, through which fluid can flow. 

The conditions under which sea ice forms determine 
its crystallographic structure. The centimeter scale crys-
tals are columnar in shape for ice grown under quiescent 
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(7)

conditions, and more granular when grown in wavy or tur-
bulent seas, which affects the material properties of sea ice. 
Remote sensing and sea ice properties. One reason the 
material properties of sea ice are so important and why 
there is significant interest in understanding and model-
ing them, particularly sea ice electromagnetic properties, is 
that they largely determine what is “seen” by remote sens-
ing platforms focused on the sea ice pack. Observations 
from satellite-based remote sensing provide large-scale in-
formation on the spatial variability and temporal evolu-
tion of the polar sea ice covers. The relationships between 
the observed electromagnetic signatures and the physical 
state of the ice provide large-scale information on ice con-
ditions. At the heart of these relationships is the mathe-
matics and physics of electromagnetic wave interactions 
with a complex multiscale composite material that has 
rough surfaces and significant internal variability [S33]. 

There is an array of satellite instrumentation including 
passive microwave, radar, visible and near-infrared, ther-
mal infrared sensors, high resolution photography, and 
radar and lidar altimeters. The electromagnetic signatures 
are converted by algorithms into information on sea ice 
concentration and extent, ice age, ice motion, ice surface 
conditions, and ice thickness [S52]. Underlying these algo-
rithms are various electromagnetic inverse problems and 
inverse scattering theories [S32]. The resulting data sets 
are a critical contribution to observing and understanding 
the changing polar sea ice cover. 

Homogenization refers broadly to a circle of ideas in 
applied mathematics and the physics and engineering of 
materials, where the goal is to find the effective, bulk, or 
homogenized properties of a composite or inhomogeneous 
medium. Sea ice is a polycrystalline composite of pure ice 
with brine, air, and solid salt inclusions. We first consider 
homogenization for two-phase composites and then for 
polycrystalline media. 

We briefly describe the analytic continuation method 
(ACM) in homogenization theory. This approach was orig-
inally developed to study the effective properties of two-
phase composite materials, such as electrical and thermal 
conductivity, complex permittivity, magnetic permeabil-
ity, diffusivity, and elasticity, which can all be similarly for-
mulated [S9,S62,S29,S63]. The method has been used to 
obtain forward bounds on the homogenized coefficients 
given partial information on the microstructure, such as 
the volume fractions of the constituents, and extended 
to multiphase media using techniques of several complex 
variables [S30,S28]. This approach has also been success-
ful in addressing the inverse homogenization problem of 
obtaining information on the microstructural parameters 
from bulk property measurements [S58,S16,S13,S63]. 

Motivated by sea ice remote sensing and the physics 
of electromagnetic waves interacting with sea ice, there 

were numerous developments in the 1990s in the ACM 
and its application to sea ice [Gol09]. Most of this work 
was focused on the brine microstructure. More recently, 
again motivated by sea ice processes, there have been sev-
eral advances in extending the ACM to larger-scale prob-
lems. These include homogenization for polycrystalline 
materials [GLCG15], advection diffusion processes involv-
ing incompressible velocity fields [S4,S66], such as ther-
mal transport through sea ice enhanced by brine convec-
tion [S51], and ocean surface wave propagation through 
the sea ice pack treated as a two-phase composite of ice 
floes and sea water [S84]. 

To describe the ACM and the principal features that 
carry over to other systems, we formulate the method in 
the electromagnetic case for the complex permittivity, al-
though equivalent formulations could be given for the 
other properties mentioned above. We consider a two-
phase locally isotropic composite, 𝜖(x) = 𝜖1𝜒1(x)+𝜖2𝜒2(x), 
where 𝜖𝑗 is the complex permittivity of brine or ice for 
𝑗 = 1, 2, respectively, and 𝜒𝑗 is the characteristic func-
tion equaling 1 for medium 𝑗 at x, and 0 otherwise, with 
𝜒2 = 1 − 𝜒1. The local parameter 𝜖(x) is a stationary ran-
dom field with Ω the set of realizations of the random 
medium and underlying probability measure 𝑃 compati-
ble with stationarity [Gol09, S29]. 

When the wavelength is much larger than the mi-
crostructural scale, the problem can be formulated with 
the quasistatic Maxwell equations, ∇ × E = 0,∇ ⋅ D = 0, 
where E(x) and D(x) are stationary electric and displace-
ment fields with D(x) = 𝜖(x)E(x). We assume ⟨E⟩ = e𝑘, 
where ⟨⋅⟩ denotes ensemble averaging over Ω or spatial av-
eraging over all of ℝ𝑑 , and e𝑘 is a unit vector in the 𝑘th 
direction. The effective complex permittivity tensor 𝜖∗ is 
defined by ⟨D⟩ = 𝜖∗⟨E⟩. Let 𝜖∗ = 𝜖∗𝑘𝑘 = ⟨𝜖E ⋅ e𝑘⟩. Due 
to homogeneity, 𝜖∗(𝑎𝜖 , 𝑎𝜖 ) = 𝑎𝜖∗ ∗

1 2 (𝜖1, 𝜖 ), 𝜖  
2 depends on 

ℎ = 𝜖1/𝜖2 and we define 𝑚(ℎ) = 𝜖∗/𝜖2, which is a Herglotz 
function that maps the upper half ℎ-plane to the upper half 
𝑚-plane, and is analytic off (−∞, 0]. The key is to obtain 
the resolvent representation 

E = 𝑠(𝑠I + 𝚪𝜒1)−1e𝑘. (6) 

Here 𝚪 = ∇(−Δ )∇⋅ is a projection from 𝐿 (Ω, 𝑃) onto the 
Hilbert space of curl-free random fields, and Δ−1 is convo-
lution with the free space Green’s function for the Lapla-
cian Δ = ∇2 . 

Consider 𝐹(𝑠) = 1−𝑚(ℎ), 𝑠 = 1/(1−ℎ), which is analytic 
off [0, 1] in the 𝑠-plane. Then (6) yields a Stieltjes integral 
representation for 𝜖∗ , 

−1 2
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measure associated with the bounded, self-adjoint opera-
tor 𝚪𝜒1. 

Equation (7) is based on the spectral theorem for the 
resolvent of 𝚪𝜒1. This representation separates the com-
ponent parameters in 𝑠 from the geometrical informa-
tion in 𝜇. The geometry enters via the moments 𝜇𝑛 = 
∫0
1 𝑧𝑛𝑑𝜇(𝑧) = ⟨𝜒1[(𝚪𝜒1)𝑛e𝑘]⋅e𝑘⟩, 𝑛 = 0, 1, 2, …. The mass 𝜇0 

is ⟨𝜒1e𝑘 ⋅ e𝑘⟩ = ⟨𝜒1⟩ = 𝜙, where 𝜙 is the brine volume frac-
tion. The (𝑛+1)-point correlation function of the medium 
determines 𝜇𝑛. 

The integral representation (7) yields forward bounds on 
the effective parameters of composites, given partial infor-
mation on the microgeometry via the 𝜇𝑛 [S63], and on 
𝜖∗ for sea ice in particular [Gol09]. The integral represen-
tation can also be used to obtain inverse bounds, allowing 
one to use data about the electromagnetic response of a 
composite, for example, to bound its structural parame-
ters, such as the volume fraction of each of the compo-
nents [S58,S16,S13,S63,S38,S69]. 

Computing the spectral measure 𝜇 directly for a com-
posite microstructure involves discretizing an image of the 
composite into a square lattice filled with 1’s and 0’s cor-
responding to the two phases, as in Figure 2. Then 𝚪𝜒1, 
which depends on the geometry via 𝜒1, becomes a matrix. 
The spectral measure may be calculated from the eigenval-
ues and eigenvectors [S65]. 

Figure 2. The two-dimensional square lattice below its 
percolation threshold of 𝑝𝑐 = 1/2 in (a) and above it in (b). A 
schematic graph of the effective conductivity is shown in (c). 

Percolation. The connectivity of the brine phase in sea 
ice is a principal determinant of its electromagnetic and 
fluid transport properties. For example, fluid convection 
in sea ice, which can occur when the brine phase is suf-
ficiently connected to form channels, plays an important 
role in thermal transport in sea ice as well as in nutrient re-
plenishment processes for microbial communities living 
inside the brine inclusions. On larger scales, the connec-
tivity of melt ponds on the surface of Arctic sea ice helps de-
termine drainage patterns which can impact sea ice albedo. 
In ocean surface wave propagation through the two-phase 
composite of ice floes in a sea water host, the connectiv-
ity of the water phase significantly influences the homog-
enized mechanical properties and wave propagation char-
acteristics of the ice pack. 

The percolation model has been widely used to formu-
late and address questions involving connectivity in com-
plex systems such as porous media and composite mate-
rials [Gol09]. In its simplest form, one considers the 𝑑-
dimensional integer lattice ℤ𝑑 , and the square or cubic net-
work of bonds joining nearest neighbor lattice sites. We as-
sign to each bond a conductivity 𝜎0 > 0 with probability 𝑝, 
meaning it is open (black), or a conductivity 0 with prob-
ability 1 − 𝑝, meaning it is closed. Two examples of bond 
configurations are shown in Figure 2, with 𝑝 = 1/3 in (a) 
and 𝑝 = 2/3 in (b). Groups of connected open bonds are 
called open clusters. In this model there is a critical proba-
bility 𝑝𝑐, 0 < 𝑝𝑐 < 1, called the percolation threshold, which 
is the smallest 𝑝 for which an infinite open cluster exists. 
For the two-dimensional bond lattice 𝑝𝑐 = 1/2. 

The effective conductivity 𝜎∗(𝑝) of the lattice, or ran-
dom resistor network (RRN) defined via Kirchoff’s laws, 
vanishes for 𝑝 < 𝑝𝑐 as shown in Figure 2(c), since there 
are no conducting pathways. For 𝑝 > 𝑝𝑐, 𝜎∗(𝑝) > 0, and 
near 𝑝𝑐, 𝜎∗(𝑝) ∼ 𝜎0(𝑝 − 𝑝𝑐)𝑡, 𝑝 → 𝑝+𝑐 , where 𝑡 is the con-
ductivity critical exponent, with 1 ≤ 𝑡 ≤ 2 in 𝑑 = 2, 3, and 
numerical values 𝑡 ≈ 1.3 in 𝑑 = 2 and 𝑡 ≈ 2.0 in 𝑑 = 3. 
Now consider a random pipe network with effective fluid 
permeability Π(𝑝) and critical behavior Π(𝑝) ∼ Π0(𝑝−𝑝𝑐)𝑒, 
where Π0 depends on pipe radius and 𝑒 is the permeability 
exponent, with 𝑒 = 𝑡 for lattices. Both 𝑡 and 𝑒 are believed 
to be universal—depending only on dimension and not 
on the lattice. Continuum models, like the Swiss cheese 
model, can exhibit nonuniversal behavior with exponents 
different from the lattice case and 𝑒 ≠ 𝑡. 

Columnar sea ice, which forms under quiescent condi-
tions, has a percolation threshold of 𝜙𝑐 ≈ 5% brine vol-
ume fraction. For a typical bulk salinity of 5 ppt, this cor-
responds to a critical temperature of 𝑇𝑐 ≈ −5∘ C, known 
as the rule of fives [GAL98]. In modeling brine geometry 
to predict the low value of 𝜙𝑐, we observe an excluded vol-
ume effect: the inclusions lie on the boundaries of pure 
ice platelets, not randomly distributed throughout their 
host. Sea ice is similar to compressed powders of polymer 
spheres with smaller conducting particles in the interstices, 
used in radar absorbing, stealthy aircraft coatings. Connec-
tivity of the conducting phase in compressed powders can 
be achieved with low volume fractions of the particles. A 
continuum theory of compressed powders adapted to sea 
ice predicts the 5% threshold—the on–off switch for fluid 
flow in sea ice [GAL98]. Brine inclusion sizes are lognor-
mally distributed, so that lattice theory holds. Universal 
critical exponents 𝑒 = 𝑡 = 2 give predictions for Π(𝜙) and 
𝜎∗(𝜙) that agree closely with measurements [S34]. 

The spectral measure 𝜇 depends on the microstructure 
of the composite, and phase connectedness in particular. 
For the RRN with the microgeometry determined by inde-
pendent weighted coin flips, 𝚪𝜒1 becomes a matrix with 
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random coefficients via 𝜒1, which equals 1 on open bonds. 
The statistics of the eigenvalues and eigenvectors of 𝚪𝜒1 

for discretizations of sea ice structures and the RRN were 
studied. It was found that as long-range order and con-
nectivity develop with 𝑝 ⟶ 𝑝𝑐− , the spectral and localiza-
tion statistics undergo a percolation-driven Anderson tran-
sition [S64]. This behavior directly parallels the quantum 
theory of the metal/insulator transition and other local-
ization phenomena in wave physics [S37], and connects 
sea ice modeling to random matrix theory [S21]. The 
eigenvalue spacing distribution, for example, transitions 
from an uncorrelated Poissonian to a repulsive, universal 
Wigner–Dyson distribution for the Gaussian Orthogonal 
Ensemble [S64]. 
Polycrystalline structure. Sea ice is a polycrystalline 
composite—a conglomeration of centimeter scale individ-
ual crystals, whose structure depends on how the ice was 
grown [S116,S74]. For congelation ice frozen under calm 
conditions, the crystals are vertically elongated columns, 
and each crystal itself is a composite of pure ice platelets 
separating “layers” of brine inclusions. The orientation of 
each crystal is determined by the direction that the 𝑐-axis 
points, which is perpendicular to the platelets. Horizon-
tal thin sections of columnar sea ice viewed under cross-
polarized light are shown in Figures 1 and 3. Shown on 
the right in Figure 3 is a thin section of granular ice, likely 
grown under turbulent conditions, or perhaps formed as 
snow-ice from flooding of the surface snow layer and sub-
sequent freezing. 

The 𝑐-axes of columnar ice typically lie within the hori-
zontal plane, yet are randomly oriented within the plane, 
unless there is a prevalent ocean current direction during 
growth. In this case the 𝑐-axes tend to align with the cur-
rent [S117,S54], as shown in Figure 3. The orientations of 
the crystals in granular ice tend to be statistically isotropic, 
as shown on the right in Figure 3, where different colors 
indicate different crystal orientations. The columnar ice 
on the left, on the other hand, has 𝑐-axes that are closely 
correlated. 

The polycrystalline structure of sea ice can impact its 
electromagnetic and mechanical properties, as well as how 

Figure 3. Cross-polarized images of columnar sea ice from the 
Ross Sea on the left, and granular ice from the 
Bellingshausen Sea on the right. 

Figure 4. Polycrystalline bounds [GLCG15] on the complex 
permittivity of sea ice (left) together with measurements [S2]. 
Comparison of a polycrystalline bound (blue) with the two 
component bounds (right) shows a dramatic improvement 
over the classical results as the new bounds include 
additional information about single crystal orientations 
(notice different scales on the axes). 

fluids and nutrients flow through the ice. Recent work, for 
example, shows that granular ice has a higher percolation 
threshold for fluid flow than columnar ice, with 𝜙𝑐 ≈ 10%, 
which has implications for modeling microbial communi-
ties and physical processes [S35]. Determining ice type us-
ing remote sensing techniques is thus of particular interest. 
Early studies show that aligned columnar ice gives differ-
ent radar returns and observed permittivities, depending 
on the electric field polarization, affecting measurements 
of ice thickness [S31]. 

In extending the analytic continuation approach be-
yond two-phase composites, a Stieltjes integral represen-
tation and bounds were obtained for 𝜖∗ of polycrystalline 
composites in general, and sea ice in particular, consid-
ered as a three-dimensional, transversely isotropic or uni-
axial polycrystalline composite material [GLCG15]. The 
forward bounds on the components of 𝜖∗ use information 
about the complex permittivity tensor 𝜀 of the individual 
crystals and the mean crystal orientation. In Figure 4 (left) 
they are in good agreement with measurements [S2], and 
(right) they are compared with the classic two-component 
bounds. The inverse bounds [GLCG15, S16] for the mean 
orientation are obtained from measurements of 𝜖∗ , and 
lay the groundwork for determining ice type using remote 
sensing techniques. 

The mathematical framework for analysis of the elec-
tromagnetic transport properties of random, uniaxial poly-
crystalline media [GLCG15] is analogous to that for two-
phase random media. In a polycrystalline material, crys-
tals of varying size, shape, and orientation have the same 
complex permittivity tensor 𝜀 with different values along 
different crystal axes. Crystal orientation is given by a rota-
tion matrix B. 

For transversely isotropic or uniaxial polycrystalline me-
dia, the permittivity along one of the crystal axes has the 
value 𝜖1, while the permittivities along all the other crystal 
axes have the value 𝜖2, so that 𝜀 = diag(𝜖1, 𝜖2, 𝜖2). The local 
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permittivity tensor of such media is given by 

𝜖(x, 𝜔) = B (x, 𝜔) 𝜀 B(x, 𝜔), 𝑇 (8) 

where B(x, 𝜔) is a random rotation matrix. The effective 
omplex permittivity tensor 𝜖∗ is defined as above, and has 
omponents 𝜖∗ 

𝑗𝑘 = e𝑗 ⋅ 𝜖∗ −1
 e𝑘 = ⟨e𝑗 ⋅ B 𝜀BE⟩, where ⟨E⟩ = 

𝑘. Introducing ℎ = 𝜖1/𝜖2, 𝑠 = 1/(1 − ℎ), and matrices 
 = e1(e1)𝑇 and R = B𝑇 CB, we can write components of a 
ensor function 𝐹 (𝑠) as 𝐹 ∗ −1

𝑗𝑘 𝑗𝑘(𝑠) = 1 − 𝜖𝑗𝑘/𝜖2 = ⟨𝑠 e𝑗 ⋅ RE⟩.
n analogy with the two-component case, we derive the 
esolvent representation 

c
c
e
C
t
I
r

E = 𝑠(𝑠I + 𝚪R)−1e𝑘, (9) 

which leads to an integral representation for 𝑗𝑘  similar 
to (7) where the positive-definite measure {𝜇𝑗𝑘} is the spec-
tral measure of the self-adjoint operator 𝚪R = ∇(−Δ)−1∇⋅ 
R. 

The inverse bounds estimate the mean crystal orienta-
tion from 𝜖∗ data, and show a significant difference in the 
reconstructed mean orientations for columnar and gran-
ular ice. This provides a foundation for distinguishing 
ice types using electromagnetic measurements. The Stielt-
jes integral representation can be generalized to elastic 
[S48,S71] and viscoelastic composites [S10,S15,S70], and 
to viscoelastic polycrystalline materials [S14]. 

The polycrystalline structure of sea ice also strongly in-
fluences its rheological behavior. Although there can be 
significant variations depending on the age and depth of 
the ice, at microscopic scales, sea ice floes can be consid-
ered to be made of solid polycrystalline ice with brine in-
clusions embedded in the hexagonal closed packed (HCP) 
ice grains. The dominant structure at this scale consists of 
columnar grains that exhibit a pronounced texture with 
𝑐-axes of the HCP single crystals in the horizontal plane 
and with random orientations in this plane. As the HCP 
ice crystals exhibit highly anisotropic viscoplastic behavior, 
with “easy” glide on basal planes and “hard” slip on non-
basal systems, this specific texture strongly influences the 
macroscopic response at these length scales. Similarly, the 
elongated intragrain brine inclusions also strongly affect 
the rheological response of sea ice. 

In [DC19] and [S76,S92] a homogenization model 
has been developed that accounts for the viscoplastic 
anisotropy of the crystal grains in sea ice, the average shape, 
volume fraction 𝜙, and orientation of the brine inclusions, 
as well as the crystallographic texture and average grain 
shape and orientation. One crucial finding from these 
models is that the viscoplastic response of intact sea ice 
exhibits a nonlinear dilatational response, which is due 
to the accommodation of overall volumetric strain by con-
comitant changes in the porosity. In addition, the hydro-
static nonlinear viscosity of sea ice depends strongly on 

𝐹 (𝑠)

the porosity and average pore shape—tending to decrease 
with increasing porosity and aspect ratio. 
Mushy layer theory and brine channels. As thinner first-
year ice becomes more prevalent in the Arctic Ocean, re-
placing thicker, fresher, multiyear ice, we are led to con-
sider sea ice with higher porosity and greater susceptibil-
ity to interstitial fluid flow. We then focus on brine trans-
port over the scale of the ice thickness (i.e., from centime-
ter to meter scales) which is effectively characterized using 
continuum models of flow in reactive porous media [S47]. 
The resulting fluid dynamics drives convective brine rejec-
tion during winter ice growth, which controls surface buoy-
ancy fluxes across the polar oceans. Such flows also pro-
vide chemical and nutrient transport for biogeochemical 
systems [S111]. Because the porous sea ice is reactive, salt 
transport induces porosity variations that impact material 
properties, such as the permeability variations that impact 
formation of surface melt ponds [S75]. These dynamics 
are also of intrinsic mathematical interest, featuring free-
boundary evolution, nonlinear dynamics, and pattern for-
mation in a multiscale continuum system that undergoes a 
transient evolution through the relevant dynamical phase 
space. We refer the reader to [WHP19] and [S47,S123] for 
further details and references. 

A widely applied continuum modeling approach treats 
sea ice as a mushy layer: a two-phase, two-component re-
active porous material [S122,S24]. We consider phase-
weighted dynamics over representative volume elements 
containing many ice crystals and liquid brine pores, with 
porosity 𝜙, temperature 𝑇, and phase-weighted salinity 
𝑆 = 𝑆𝑙𝜙 + 𝑆𝑠(1 − 𝜙) for liquid salinity 𝑆𝑙 and solid salinity 
𝑆𝑠 ≈ 0. The pore scale microstructure is assumed to ad-
just sufficiently rapidly to maintain local thermodynamic 
equilibrium, with local phase changes modifying the liq-
uid salinity so that the mixture lies at the freezing tempera-
ture 𝑇 = 𝑇𝑓(𝑆𝑙). Conservation of energy, salt, momentum, 
and mass result in the following system of coupled PDEs: 

𝜕𝑇 (𝑘∗∇𝑇)−𝜌𝑠𝐿
 𝜌𝑐𝑝 ⋅∇𝑇 = ∇⋅ 𝜕𝑡 +𝜌𝑙𝑐𝑙𝐮 𝜕𝑡 , 

𝜕𝑡 
𝜕 [𝑆𝑙𝜙] + 𝐮 ⋅ ∇𝑆𝑙 = ∇ ⋅ (𝐷∗∇𝑆𝑙) , 

𝜕𝑡 
𝜕 [𝜌𝑙𝜙 + 𝜌𝑠(1 − 𝜙)] + ∇ ⋅ (𝜌𝑙𝐮) = 0, 

𝜈 𝐮 = −∇𝑝 + 𝜌𝐠, 

𝜕𝜙
(10) 

(11) 

(12) 

Π (13) 

where 𝜌𝑐𝑝 is the homogenized heat capacity (at constant 
pressure), 𝜌 ∗ 

𝑙𝑐𝑙 is the heat capacity of the liquid, 𝑘 is the 
effective thermal conductivity, 𝜌𝑠 and 𝜌𝑙 are the solid and 
liquid densities, 𝐿 is the latent heat, 𝐷∗(𝜙) is the homog-
enized salt diffusivity, 𝜈 is the dynamic viscosity, and 𝐠 is 
gravitational acceleration. The momentum equation (13) 
uses Darcy’s law for flow in a porous medium, where the 
averaged velocity field 𝐮 depends on the fluid permeability 
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Π(𝜙), the pressure gradient, and buoyancy forces depend-
ing on fluid density 𝜌 ≈ 𝜌𝑙 (1 − 𝛽𝑆𝑙) with haline coefficient 
𝛽. 

For 𝐮 = 0, (10)–(11) can be used with appropriate 
boundary conditions to solve a Stefan problem for a diffu-
sively growing ice layer with vertical variation of the poros-
ity 𝜙. However, for natural sea ice growth an unstable den-
sity gradient arises in the pore fluid, and a convective in-
stability can break the horizontal symmetry giving rise to 
brine channels [S122]. The convective cells are modified 
by a flow-focusing feedback, where downwelling brine dis-
solves the ice matrix, increasing porosity and permeability. 
The nonlinear development focuses downflow into narrow 
high porosity brine channels that eventually become solid 
free, with wider regions of upwelling and lower porosity 
in between [S122]. The resulting brine channels evolve in 
space and time as the ice grows, as shown in experiments 
reviewed in [WHP19], and in numerical solutions of the 
nonlinear system (10)–(13) illustrated in Figure 5. The 
question then arises as to what controls the wavelength of 
this pattern, and the resulting brine channel spacing. 

Linear stability analyses predict convective onset when 
the mushy-layer Rayleigh number 𝑅 = 𝜌𝑙𝑔𝛽Δ𝑆Π0ℎ/𝜅𝜈 ex-
ceeds a critical value [S122], which occurs for large enough 
mushy-layer thickness ℎ. Here Δ𝑆 is a characteristic salin-
ity difference, Π0 a representative, permeability value, and 
𝜅 the thermal diffusivity. Weakly nonlinear analyses elu-
cidate the pattern formation, and potential for oscilla-
tory modes of instability [S1,S122]. However, the chan-
nel spacing coarsens over time, and fully developed brine 
channels are solid free, which represents a significant de-
parture from the background state. This requires a differ-
ent approach that accounts for the nonlinearity. One such 
approach uses enthalpy method simulations, where the 
narrow brine channel widths promote the effectiveness of 
Adaptive Mesh Refinement [PMWK20]. Asymptotic mod-
els have also been developed to describe brine channel 
flow [S87], exploiting the slenderness of channel width 𝑎 
versus the mushy-layer thickness (𝑎/ℎ ≪ 1). The asymp-
totically reduced channel description has been coupled to 
numerical models of the remaining mush [S120] and used 
in semianalytic models [S79]. 

For steady growth with a periodic array of channels with 
imposed wavelength 𝜆, the salt fluxes from the mushy layer 
vary with the channel spacing. The competition between 
neighboring channels results in a saddle-node bifurcation 
with flow shutting down as 𝜆 is decreased [S79,S118]. This 
is consistent with experiments of mushy-layer growth with 
lateral confinement [S126]. For unrestricted growth in 
wider domains, it has been posed [S118] that the emergent 
wavelength in this nonlinear dissipative system evolves to 
optimize the salt flux (and corresponding flux of poten-
tial energy). This predicts that the channel spacing scales 

Figure 5. Evolution of a convecting mushy layer with porosity 
𝜙 and dimensionless liquid-region salinity 
𝑆1 = (𝑆𝑙 − 𝑆𝑜)/(𝑆𝐸 − 𝑆𝑜), where 𝑆𝑜 is ocean salinity and 𝑆𝐸 

eutectic salinity. Simulations use the enthalpy method in 
[PMWK20] for sea ice growth in a 2-D Hele-Shaw cell of depth 
𝐻. 

proportionally to the depth of convective cells, and yields 
a solute flux consistent with transient ice growth in lab ex-
periments [S119]. More detailed tests of the transient evo-
lution are awaited, but this approach has motivated param-
eterizations of fluid transport for brine fluxes and biogeo-
chemical systems [S123]. 

4. Mesoscale Processes 
Formation of leads and ridges. The Arctic Ocean is sur-
rounded by land and each fall sea water freezes up to the 
land boundaries and fills the Arctic basin with ice that lasts 
through the winter. Near-shore ice melts in the spring 
and summer but (currently) ice remains in the high Arctic 
year round. Motion of the ice is driven primarily by wind 
and ocean currents, with wind being the dominant force. 
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As ice forms from frozen sea water, it insulates the rela-
tively warmer ocean (−2∘C) from the colder atmosphere 
(−20∘C). When the atmosphere is cold, water initially 
freezes rapidly, but as the insulating layer of ice grows, the 
freezing rate slows, as a basic Stefan model shows. At ther-
modynamic equilibrium, the ice would be about 1.5 m 
thick; however ice motion and deformation alter ice thick-
ness. Leads are areas of open water formed when currents 
or winds pull or shear ice apart, and in winter form long, 
narrow openings, meters to hundreds of meters wide that 
can stretch hundreds of kilometers or more in length [S22]. 
Leads occupy 1–2% of the ice area but account for 70% of 
the ocean-air heat flux [S56]. (Heat flux through ice is 2– 
5 Wm−2 compared with 300–500 Wm−2 through leads.) 
Leads are of fundamental importance to Earth’s heat bud-
get, ice production, and navigation. 

Figure 6. Left: Ridged Antarctic sea ice. Right: A wide lead in 
Antarctic sea ice. 

Within a lead, rapid refreezing of the open water creates 
thin ice. The crushing of the thinner lead ice during con-
vergent or shear flow piles blocks of ice onto the surface 
to form ridge sails or forces the blocks under the surface 
to form ridge keels. These prominent features of the Arctic 
ice pack can reach roughly 30 m high. It is estimated that 
half of the total Arctic ice volume is in ridged ice [S112]. 
Bonds formed between the ice blocks due to freezing, and 
refreezing of the part under the water surface, turn sea ice 
ridges into robust ice features. Ridge formation is a mech-
anism that increases the volume of ice per unit area. Both 
leads and pressure ridges are usually narrow, long, local-
ized features, often referred to as linear kinematic features 
[S53]. 

Ridges have variable properties and shapes [S102,S97] 
which change throughout the season [S55], but data has 
been difficult to obtain. Data on block dimensions, keel 
and sail width and area, mechanical properties, and inter-
nal structure such as degree of consolidation or porosity— 
and the relationships between these properties—are lack-
ing. To fill the gaps, individual ridge formation has been 
studied analytically using beam theory [S73,S19], numer-
ically using DEM, in ice tank tests [S109], and through 
remote sensing via satellites and upward-looking sonar 
mounted on submarines. 

A realistic representation of leads and ridges in sea ice 
models could drastically increase the fidelity in large-scale 
general circulation models. The opening and closing of 
open water areas in leads affects ice production and ice 
mass balance, vertical heat fluxes between the ocean and at-
mosphere, and upper ocean salinity since brine is rejected 
as sea water freezes. Leads have an albedo significantly 
lower than sea ice and thus increase the local absorption of 
solar energy. Ridge sails and keels change the atmosphere-
ice and the ice-ocean drag forces. Modeling correspond-
ing effective drag coefficients involves complex homoge-
nization problems. Ridges appear not only in high Arc-
tic regions, but also in areas where human activities are 
more prevalent. On the floe scale, leads are areas where 
land- and ice-dwelling animals feed, and where sea life or 
submarines can surface. The design of off-shore structures 
and ice-going vessels needs to account for possible loads 
imparted by ridging ice. 
Floe size distribution. Viewed from a helicopter or satel-
lite, the sea ice cover is a composite material—a mosaic 
of individual pieces, known as floes. Each individual floe 
may be identified with two geometric parameters: its thick-
ness and its “size,” where size is a metric related to its hor-
izontal extent. Whereas ice thicknesses vary from centime-
ters to meters, floe sizes vary from pancakes centimeters 
across to swaths of connected ice in winter, reaching over 
hundreds of kilometers, on the scale of the entire Arctic 
basin. 

Figure 7. Segmentation of a video image via thresholding 
gives floe boundaries (red) in the Antarctic marginal ice zone 
[S104]. 

The significance of the shape and scale of sea ice floes 
was recognized in a modeling context in [S83], where a va-
riety of different approaches to compiling statistical infor-
mation about floe sizes was described. The “mean caliper 
diameter” 2𝑟𝐶 was defined as the average distance between 
two parallel lines that touch a floe’s boundary but do not 
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intersect it. Though floes have irregular shapes, the rela-
tion 𝐴 = 𝜋𝑟2 

𝐶 , where 𝐴 is floe area, was found to be accurate 
within 10%, and therefore recent modeling efforts define a 
floe’s size through the effective radius of an equivalent-area 
circular disc [HT15], 𝑟 ≡ √𝐴/𝜋. 

Consider an area 𝒜 containing 𝒩 floes with areas 𝐴𝑖 
and radii 𝑟𝑖. An area-based floe size distribution (FSD) 𝑓(𝑟) 
is defined analogously to the ice thickness distribution 𝑔(ℎ) 
as 

𝑓(𝑟)𝑑𝑟 = 𝐴𝑖, 𝒜
 ∑ 
𝑖∈𝑅𝑖 

(14)
1

where 𝑅𝑖 = {𝑖 ∶ 𝑟𝑖 ∈ [𝑟, 𝑟 + 𝑑𝑟)}. The FSD is therefore an 
area-weighted probability distribution function of floe size 
defined at any scale. 

The FSD encodes information about the number of 
floes per unit area at each size 𝑁(𝑟) = 𝑓(𝑟)/𝜋𝑟2 , and the 
perimeter of floes per unit area at each size 𝑃(𝑟) = 2𝑓(𝑟)/𝑟. 
Upon visual inspection, ice pack geometry exhibits self-
similar scale-invariant behavior. In [S83] and nearly all 
subsequent observational studies, power law behavior for 
these distributions was adopted, such as 𝑁(𝑟) ∝ 𝑟−𝛼 for 
𝑟 ∈ [𝑟0, ∞). The power-law exponent 𝛼 is directly anal-
ogous to a fractal dimension under the assumption that 
some scale-invariant process generates the FSD, for exam-
ple sequential fragmentation [S104]. Note, however, that 
observed power law coefficients can be produced by many 
different scale-dependent processes [S45], and the analogy 
is not necessarily appropriate in all cases. Constraints on 
𝛼 are imposed by physical constraints: finite floe area and 
finite or infinite floe perimeter. 

The “power law hypothesis” has been supported in 
some observational studies, with different 𝛼 observed in 
different size regimes [S106,S104], though the general va-
lidity of this hypothesis has seldom been tested. Stud-
ies of 𝑓(𝑟) without straight lines in log-log space are of-
ten interpreted as “double power law distributions” [S106]. 
The first Arctic-wide assessment of the FSD using satellite 
altimetry showed limited support for power-law tail be-
havior [S44]. Recent meta-analyses of FSD observations 
[S39,S94] also reveal a wide range of reported values of 
𝛼 ( ∼ between 0 and 4) and a lack of consistent scale-
invariant behavior. Still, there is clear utility in parametric 
descriptions of the FSD. 

Viewing the sea ice pack as a granular composite ma-
terial, floe size is analogous to grain size in traditional 
continuum mechanics [S107]. Sea ice models that use a 
continuum viscous-plastic rheology inherit a latent sub-
grid scale floe size distribution [Hib79, S105]. A critical 
influence on the FSD is coupling to ocean surface waves. 
Waves directly alter the FSD, but can then also indirectly in-
fluence ice thickness or concentration, with fractured floes 
melting more rapidly than larger ones. In 2009 an expedi-
tion left a region of compact multiyear ice before a storm 

[S3]. Returning three days later, the ice was heavily frag-
mented, and had mostly melted. The impact of floe size on 
melting has been codified [S125,S46,S80,S6], finding that 
wave-induced fracture changes synoptic sea ice patterns by 
increasing susceptibility to melting. 

Most theoretical works have posited models for power-
law FSD behavior [S23,S104,S121,S124]. In analogy to 
the fragmentation of brittle media, power law distribu-
tions were hypothesized using a “renormalization group” 
method [S104]. The fragmentation process assumes a 
floe of perimeter 𝒫 fractures into 𝑚 equally-sized floes of 
perimeter 𝒫/𝑚 with probability 𝑝. The sequential appli-
cation of this process yields closed-form expressions for 
the number-size distribution and exponent 𝛼, which re-
quire 0 < 𝛼 < 2. However in many observational stud-
ies, 𝛼 does not lie within that range [S39,S94,S44]. Such 
scale-invariant fragmentation may exist in the interior Arc-
tic, where sea ice is brittle, solid, and strongly constrained 
by geometry—but in marginal seas and in summer, sea ice 
is closer to free drift and it fragments either because of ther-
mal processes or waves. A meta-analysis [S39] explored 
whether the wide range of observed FSDs was better fit by 
a Pareto distribution, 

𝑁(𝑥) ∼ 𝑥−1−𝛼𝑒𝑐(1−𝛼)/𝑥, (15) 

where 𝑥 = 𝑟/𝑟 is floe size scaled by the mean observed 
size 𝑟, and 𝑐 and 𝛼 are unknown. Such a functional form 
is the solution to a discrete-time Langevin equation, with 
a prediction for 𝛼 [S39] as the representation of the dual 
processes of floe breakup and growth. 

A prognostic theory of FSD evolution built from floe-
floe interactions was developed in [HT15]. The FSD 𝑓 
evolves in time according to a partial differential equation 
with stochastic terms, 

(16)
𝐷𝑓 = ℒ𝑇 + ℒ𝑀 + ℒ𝑊, 𝐷𝑡 

where ℒ𝑇 includes thermodynamic effects, like floe melt-
ing, growth, and welding; ℒ𝑀 includes mechanical effects 
such as rafting and ridge formation; ℒ𝑊 includes wave-ice 
interactions. Each pair of individual processes and their 
relationship to observations was evaluated in [S46]. Ob-
served multiscale distributions are produced as an emer-
gent feature [S80], implemented in climate models, and 
compare favorably to floe statistics from altimetry in the 
marginal ice zone [S44]. 

Because modern large scale climate models can’t resolve 
floes, further refinements in coupled model grids may ne-
cessitate new approaches to simulating sea ice. One is hy-
brid continuum-discrete-element models that parameter-
ize the FSD where floes are small relative to the grid scale, 
and resolve floes when they are large. 
Surface wave propagation through the sea ice pack. 
Ocean surface waves carry huge stores of energy across the 
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ocean, and can propagate hundreds of kilometers into the 
sea ice pack. They create a highly dynamic region known 
as the marginal ice zone (MIZ), in which they break up 
large floes into smaller floes, and promote formation of 
pancake ice. Thus, waves influence 𝑓(𝑟) in the MIZ, giving 
it dynamic and thermodynamic properties distinct from 
the inner pack. 

With sea ice weakening and retreating in response to 
rising temperatures, new regions of the ocean surface are 
opening for wave generation [S101], waves are propagating 
farther into the pack, the ice is becoming more susceptible 
to wave impacts [S3], and waves are reaching Antarctic ice 
shelves with potentially catastrophic consequences [S57]. 
This is driving integration of wave-ice processes into the 
next generation of global sea ice models. Accurate predic-
tions of wave propagation through the ice pack are essen-
tial to empower predictions of the extent and properties 
of the MIZ, where the primary quantity of interest is the 
attenuation coefficient 𝛾(𝜔), which is the rate of exponen-
tial decay of wave energy with distance travelled through 
the MIZ, and depends on wave frequency 𝜔 as well as the 
properties of the ice cover. In general, 𝛾 increases with in-
creasing 𝜔, so that short waves are filtered out close to the 
ice edge, and longer waves propagate farther into the pack. 

The first standard approach to model wave propagation 
through the ice pack is based on multiple scattering the-
ory, analogous to light scattering in the sky. It is used 
in the regime where wavelengths are comparable to floe 
sizes. The scattering model was initially developed in the 
1970s and 80s, alongside pioneering Arctic field experi-
ments [S113]. A wave is scattered by each floe it encoun-
ters, due to the impedance mismatch between open wa-
ter and ice covered water, with floes modeled as floating 
elastic plates, so they flex in response to waves. The scat-
tered wave field interacts with surrounding floes, which re-
scatter it, and so on, to create a multiple scattering wave 
field, which, under some simplifying assumptions, can be 
written as 

𝜂 = 𝜂inc + ∑ 𝑏𝑚,𝑝 H𝑚(𝑘 𝑟𝑝) ei 𝑚 𝜃𝑝 , 
𝑝,𝑚 

(17) 

where 𝜂 is the ocean surface elevation, 𝜂inc is the incident 
wave elevation, 𝑝 ∈ ℱ is the set of floes, H𝑚 is the first-kind 
Hankel function of order 𝑚 ∈ ℤ, 𝑘(𝜔) is the open-water 
wave number, (𝑟𝑝, 𝜃𝑝) is the polar coordinate of a point 
on the ocean surface from floe 𝑝, 𝑏𝑚,𝑝 are the scattered-
wave amplitudes to be calculated, and harmonic time de-
pendence is implicitly assumed. Each individual floe has 
to be resolved in the model, making direct computations 
extremely expensive over the hundreds of kilometers that 
waves propagate, and extracting the attenuation coefficient 
from (17) is challenging. The original model was 2D (one 
depth dimension and one propagation dimension), and 

used crude approximations for scattering by an individual 
floe and multiple scattering by many floes. 

Mathematicians have given considerable attention to 
the scattering model since the 1990s, developing new 
methods for efficient computation of attenuation rates. 
Some 30–40 years after the model was initially proposed, 
we are at the point where efficient techniques are available 
to solve the scattering problem for an elastic floe of arbi-
trary shape in three dimensions [S59,S7], and solve the 3D 
multiple scattering problem for a full sea of floes. The work 
in [MSB16] is a milestone in this field. It was the first to 
predict propagation of directional wave spectra into an ice 
pack consisting of 10,000 floes with a realistic FSD. The 
final breakthrough was development of a slab-clustering 
method, where the ice cover is divided into computation-
ally manageable groups (slabs), and a recursive algorithm 
combines the groups. 

The second standard approach is to model the ice pack 
as a continuum with effective properties, based on homog-
enization theory for composite media, including an effec-
tive viscous dissipation. It is valid in the long-wavelength 
regime, where wavelengths are much greater than floe 
sizes—for example, in pancake ice conditions. The contin-
uum model leads to a dispersion relation in wave number 
𝜅 and frequency 𝜔, 

(1 + 𝑄(𝜅, 𝜔)) 𝑔 𝜅 = 𝜔2 (18) 

in which 𝑄 encodes the effective properties, and from 
which the attenuation rate is extracted as 𝛾 = 2 Im(𝜅). An 
early model of this type [S115] treated the ice pack as a 
viscous fluid floating on the ocean surface. The full disper-
sion relation is derived in [S50] along with asymptotics for 
the wave number in certain limits. 

Over the past decade, there has been a resurgence in 
continuum models, motivated by substantially improved 
measurements of waves in the MIZ [S60,S100], which have 
predominantly been in the long-wavelength regime. A 
viscous-elastic continuum model [S114], which extends 
the viscous layer models, has received considerable atten-
tion. Effective parameters in these models have gener-
ally been fitted to experimental data, with varying success 
[S61]. However, in [S84] a resolvent for the strain field like 
equation (6) was used to obtain a Stieltjes integral and 
bounds for the effective complex viscoelasticity of a two-
phase composite of ice floes and sea water. Given the vis-
coelasticities of the constituents, the floe area fraction and 
geometry, the theory predicts effective behavior that agrees 
with observations. 

Laboratory experiments have revealed nonlinear pro-
cesses that affect propagation characteristics [S8]. Most at-
tention has been on overwash phenomena, where waves 
break over the surface of floes, generating turbulent bores 
that propagate across the floe [S67]. A hyperbolic PDE 
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system for floe overwash has been proposed, using linear 
theory for water around the floe, and the nonlinear shal-
low water equations for the overwash [S91], which gives ex-
cellent agreement with laboratory experiments. See [S93] 
for a recent review of progress in wave-ice interactions. 
Melt ponds on Arctic sea ice. A distinctive, significant 
feature of the summer Arctic sea ice cover is the extensive 
ponding, as shown in Figure 8. The water produced by 
melting snow and ice collects on the surface forming melt 
ponds. Ponds play a critical role in the evolution of the 
sea ice cover. As surface reservoirs for freshwater, they can 
affect the thermohaline stratification of the upper ocean. 
The greatest impact of melt ponds is on the albedo of the 
sea ice cover. Melt ponds are darker than bare ice, with 
albedos that can range from 0.1 to 0.4 compared to 0.6 
to 0.9 for bare and snow-covered ice. The spatial cover-
age and albedo of ponds are highly variable in space and 
time. The area covered by ponds follows a seasonal cycle 
and also fluctuates from day to day. Melt ponds are the 
most intractable component of determining the summer 
albedo of Arctic sea ice. To understand the evolution of 
summer ice albedo, you must understand the evolution of 
melt ponds. 

Figure 8. Melting Arctic sea ice. 

The first model of melt ponds derived from physi-
cal principles was introduced in [S99]. This was a one-
dimensional model that treated the sea ice as a mushy layer 
[S24] with or without a snow cover, subject to a surface en-
ergy balance and ocean boundary conditions. The energy 
balance equation in the sea ice takes the form of nonlin-
ear reactive diffusion equations in heat and salinity with a 
body source term of absorbed radiation. As the internal 
liquid fraction changes, latent heat is released/absorbed 
and the brine salinity alters. Radiation fluxes are calcu-
lated to account for reflection, absorption, and scattering. 
Surface melting generates a pond on top of the ice, which 
reduces the albedo. Vertical drainage of meltwater into the 

ocean is calculated using Darcy’s law for flow in a porous 
medium. 

While the melt pond model in [S99] describes the verti-
cal evolution of melt ponds, the quantity of greater general 
interest to climate modellers is the melt pond area fraction, 
since this largely determines the albedo of the sea ice sur-
face. A cellular automata model was introduced in [S88] 
that split a sea ice floe into a checkerboard, with each cell 
of the grid comprising a column of snow, ice, and melt 
pond of varying heights. The one-dimensional model in 
[S99] was applied in each cell, with melt water moving 
to adjacent cells by flowing downhill at a rate calculated 
from Darcy’s law. The model simulates pond evolution, 
both vertically and horizontally, over various types of sea 
ice surfaces, with results in agreement with observations. 

The above models helped provide a physical under-
standing and predictive capability for melt pond evolution 
on the scale of individual ponds and sea ice floes, how-
ever, they were (and are) too complex to be directly incor-
porated into climate models. To this aim, parameteriza-
tions of melt ponds were developed in [S25,S26] which 
have subsequently been incorporated into climate sea ice 
models. Climate models do not represent the topography 
of the sea ice surface, which is a significant limitation for 
modeling melt ponds since their evolution is to a large ex-
tent determined by meltwater flowing downhill. Climate 
sea ice models do, however, contain a sea ice thickness dis-
tribution function 𝑔(ℎ, 𝐱, 𝑡). At each time step, the melt 
water in a grid cell is calculated and “poured” over the 
ice surface, with 𝑔(ℎ) serving as an adequate proxy for sur-
face height. The water covers the lowest ice first and then 
higher/thicker categories. This procedure determines the 
area fraction of the melt ponds and their depth on each 
ice thickness category. 

The surface meltwater distribution model was com-
bined with models accounting for flushing of meltwa-
ter through the ice (as in [S99]), conservative advection 
of meltwater between grid cells, and run-off of meltwa-
ter through cracks, to create the melt pond parameteriza-
tion [S25,S26]. Despite its simplicity, atmosphere-forced 
simulations of sea ice using this parameterization pro-
duce pond fractions in accordance with observations, and 
demonstrate how important it is to account for melt ponds 
in long-term sea ice predictions [FSFH12]. The impact 
of melt ponds on sea ice mass balance is significant and 
mostly driven by their impact on surface albedo. More-
over, it was found that knowing pond area fraction enables 
skillful predictions of the summer minimum sea ice extent 
up to three months in advance [SFFT14]. 

In another line of inquiry, melt pond geometry has re-
cently been investigated. It was found from area-perimeter 
data that (see the photos in Figures 8 and 9) as the ponds 
grow and coalesce, they display a transition in fractal 
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geometry, evolving from simple shapes into complex, self-
similar regions whose boundaries behave like space-filling 
curves [S42]. The fractal dimension of the boundary curves 
transitions from 1 to about 2 around a critical area of 100 
m . These findings constrain the geometry of melt pond 
evolution, provide a check on numerical simulations, and 
help quantify the mechanisms of pond growth impacted 
by the area-perimeter relationship, such as lateral heat 
transfer. 

Figure 9. Ising model simulation on the left; melt pond photo 
on the right. 

Continuum percolation models of melt pond evolution 
that display the observed fractal transition have been de-
veloped. In the random surface model [S11], a melt pond 
boundary is the intersection of a surface representing the 
snow topography with a horizontal plane representing the 
water level. As the plane rises the ponds grow and coa-
lesce. Snow topography data are used to generate random 
Fourier surfaces with realistic ponds, and a framework to 
analyze how pond geometry depends on topography. In 
the void model [S77], disks of varying size which repre-
sent ice are placed randomly on the plane, with the voids 
between them representing the ponds. Data on pond sizes 
and correlations are incorporated into the model, yielding 
observed behavior. 

Finally, the Ising model, originally developed 100 years 
ago to explain ferromagnetism, has been adapted to pre-
dict melt pond geometry [MSSG19, S36]. We envision a 
square lattice of surface patches or pixels of melt water or 
ice that interact only with their nearest neighbors. The lat-
tice spacing, as determined by snow topography data, is 
the only measured parameter input into the model. Mini-
mization of the melt pond Ising Hamiltonian via Glauber 
spin flip dynamics drives the system from an initially ran-
dom state toward realistic pond configurations (see Figure 
9), which are local energy minima, or metastable states. 
The model captures the essential mechanism of pattern 
formation of melt ponds, with predictions that agree very 
closely with observed pond size scaling and fractal transi-
tion. 

5. Large Scale Sea Ice Models 
Sea ice rheology. A given sea ice floe may be a relatively 
uniform ice sheet, as might be typical for relatively young 
ice, but is more often a refrozen patchwork of smaller 
pieces formed at various times which has undergone in-
plane and out-of-plane failure. In-plane failure results in 
cracks, along which ice floes grind in lateral motion. Out-
of-plane failure results first in break up of the ice into 
blocks under bending failure, followed by the pile up of 
blocks into the air and ocean to form pressure ridges and 
keels, respectively. Given this spatial and temporal hetero-
geneity, formulation of an effective relationship between 
the sea ice stress tensor 𝜎𝑖𝑗 and the large-scale deformation 
of the ice cover, i.e., the sea ice rheology, is a challenging 
problem that remains an active research topic. 

While early models of sea ice rheology made assump-
tions such as treating sea ice as a viscous fluid, the study 
of rheology was transformed during the Arctic Ice Dynam-
ics Joint Experiment (AIDJEX) of the 1970s, which led to 
the AIDJEX sea ice model [S18]. The chief advance of the 
AIDJEX model—rheologically—was to treat sea ice as an 
elastic-plastic material. The strongest argument for a plas-
tic model is that local events such as ridging and lead for-
mation occur sporadically and irreversibly, as though a crit-
ical stress state in the ice had been reached. 

The case for an elastic (subcritical) response can be 
argued physically in a dense pack, where thick floes are 
wedged together so that as subyield stresses are applied 
there can be only elastic deformations. In [Hib79], the 
plastic approach was adopted but the elastic subyield be-
havior was replaced with viscous behavior, which avoids 
tracking an evolving unload configuration from which 
to measure strain. Hibler’s version of this rheology, the 
Viscous-Plastic (VP) rheology, continues to be in wide-
spread use today. 

In [S18] and [Hib79], and most subsequent large-scale 
modeling efforts, sea ice is considered to be isotropic. 
While sea ice can exhibit rheological anisotropy in the 
horizontal plane under various conditions, the assump-
tion of isotropy, on average, over sufficiently large scales 
was deemed reasonable [Hib79]. In recent years this as-
sumption has been questioned with observations of large-
scale oriented lead patterns in Arctic sea ice and associ-
ated anisotropic models [Fel08]. However, isotropy was 
and remains a useful simplifying feature for modeling. 
Under this assumption, the plastic yield surface reduces 
to a yield curve in the plane of the principal stresses 𝜎1 

and 𝜎2 or, equivalently, through the stress invariants 𝜎𝐼 ≡
1 (𝜎1 + 𝜎2) = negative pressure and 𝜎𝐼𝐼 ≡ 

1 (−𝜎1 + 𝜎2) = 
2 2 
maximum shear stress. The yield criterion is written as 

ℱ(𝜎𝐼, 𝜎𝐼𝐼 ; scalars) = 0, (19) 

where ℱ is the yield function, defining a family of yield 
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curves in the (𝜎𝐼 , 𝜎𝐼𝐼 )-plane as the scalar properties of the 
ice vary. For isotropic materials, ℱ is symmetric about 
𝜎𝐼𝐼 = 0. 

When the stress state lies on the yield curve, irreversible 
plastic deformation occurs. The yield potential is identi-
fied with the plastic potential and an associated normal 
flow law is adopted, 

= 𝜆 𝜀𝑝𝑘 |ℱ=0 , 𝑘 = 𝐼, 𝐼𝐼, 𝜕𝜎  

𝜕ℱ ̇ (20) 
𝑘

where 𝜀𝑘 is the plastic strain rate and 𝜆 is a positive scalar 
which is determined as part of the solution of the equa-
tions. This flow rule has been used in almost all models 
of sea ice dynamics. It has been successfully applied to 
granular materials such as soils, and gives satisfactory per-
formance (within the limits of experimental error and pa-
rameter tuning) in sea ice simulations. 

The viscous and rigid/plastic behavior can be repre-
sented using a nonlinearly viscous (or viscoplastic) model 
for an isotropic material, 

𝑝̇

𝜎𝑖𝑗 = 2𝜂𝜀𝑖𝑗 + [𝜁 − 𝜂]𝜀𝑘𝑘 𝛿𝑖𝑗 − 𝑃𝛿𝑖𝑗 /2, ̇ ̇ (21) 

where 𝑃 is a pressure term, characteristic of the ice strength. 
The functions 𝜁(𝜀𝑖 𝑗; 𝑃) and 𝜂(𝜀𝑖 𝑗; 𝑃) (traditionally referred 
to as bulk and shear viscosities in fluid dynamics) depend 
upon the strain rate (symmetric part of the velocity defor-
mation tensor) 𝜀𝑖 𝑗 and 𝑃 so as to ensure that for typical 
strain rates the normal plastic flow law applies and the 
stress state lies on the yield curve. The shape of the yield 
curve is chosen to agree with the expected behavior of sea 
ice—that it should be weak in tension, strong in shear, and 
strongest in compression. 

For almost 30 years since the VP rheology was intro-
duced, work has focused on constraining the shape of the 
yield curve or creating numerically efficient algorithms for 
practical use. Most notable is the Elastic-Viscous-Plastic 
(EVP) rheology [HD97], which introduced an artificial 
elasticity that permits explicit numerical methods to be 
employed. The EVP rheology is used in many climate mod-
els today. 

Work on constraining the shape of the yield curve and 
flow rule has followed two main approaches: homogeniza-
tion or scale invariance. The homogenization approach 
attempts to calculate what would be the rheology of a ho-
mogenous material with the same aggregate properties as 
the unresolved (subgrid scale, ≈ 50km × 50km) region of 
heterogenous ice types and open water [S82]. Scale invari-
ance asserts that the material rheology measured in the lab 
is fundamentally the same as the rheology of a grid-scale 
region and is of a Mohr-Coulombic character, e.g., [S107]. 
More details may be found in [Fel08]. 

Aside from the huge theoretical convenience of the as-
sumption of isotropy, the most compelling argument cited 
in its favor is that on length scales of 100 km and greater, 

̇ ̇

̇

the distribution of leads appears to be nearly isotropic so 
that a mean-field rheology is isotropic. However, increas-
ing evidence has shown that lead orientation, at least in the 
central pack, has a marked bimodality with the leads defin-
ing diamond-shaped floe aggregates, e.g., [S41,S86,S17]. 
While a number of approaches have been taken to simu-
late or parameterize the impact of the observed anisotropy 
of leads on sea ice rheology, there are currently three main 
strands of modeling, as follows. 

The Elastic Decohesive model introduced to sea ice in 
[S85] explicitly simulates the formation of a crack or lead. 
The Elastic Brittle rheology, e.g., [S20], assumes an elas-
tic subfailure response and a Coulombic failure criterion, 
with a new scalar damage parameter. When a grid cell 
fails, the elastic modulus is reduced, leading to local strain 
softening. Because of the long-range interactions within 
the elastic medium, local drops in the elastic modulus 
redistribute stress that can in turn induce damage. By 
this process, avalanches of damage events can occur, sim-
ulating the propagation of leads. The Elastic Anisotropic 
Plastic rheology also introduces a damage parameter, the 
anisotropic structure tensor, that gives the orientation of 
existing cracks within an element, and the mean stress is 
calculated as a function of crack orientation. In its most 
recent formulation [S108], the cracks are assumed to de-
lineate diamond shaped floes/floe aggregates, motivated 
from observations. 

As numerical resolution in sea ice models has increased, 
and as better observations of sea ice thickness and de-
formation become available from satellite imagery, e.g., 
CryoSat-2 and IceSat-2, interest in fine scale simulation, 
e.g., ≈ 10 km, of sea ice deformation has increased. This is 
helping motivate further work on developing realistic, and 
verifiable, models of sea ice rheology. 
Large-scale numerical models. Most large-scale sea ice 
physical processes are reasonably well understood and rep-
resented in numerical climate models. For example, the 
first detailed thermodynamic description appeared almost 
50 years ago [MU71]. Likewise, a relatively simple ap-
proach for sea ice dynamics is 40 years old [Hib79]. They 
were too computationally expensive to be incorporated in 
numerical models at the time, but have now been imple-
mented in most GCMs. These thermodynamic and dy-
namic models capture the first-order behavior of sea ice 
in the climate system. Model development now follows 
two paths, both addressing higher-order effects: (1) more 
precise descriptions of key processes and characteristics 
such as microstructure evolution, anisotropy, and rheol-
ogy, and (2) model extensions for “Earth system” simula-
tions, e.g., by including biological and chemical species. 

Modern sea ice models still use one-dimensional ther-
modynamic parameterizations, because the thermody-
namic processes are still primarily vertical in nature. Most 
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early sea ice models neglected thickness variations within 
a grid cell, but many models now include ice thickness dis-
tributions. As mentioned above, a floe size distribution is 
now being added to large-scale sea ice models, driven by 
thermodynamic growth and melting along with wave in-
teractions. 

In addition to the basic equations presented above for 
momentum, internal stress, and thermodynamics, numer-
ical sea ice models also include detailed representations 
of radiative balance, surface characteristics and evolution 
(snow, snow-ice, melt ponds, albedo), ice strength, hor-
izontal transport, and ridging. Some models now incor-
porate detailed descriptions of key players in the sea ice 
ecosystem, such as algae. These models must also interact 
with the other components of the Earth system, namely 
the atmosphere, ocean, and their ecosystems. These in-
teractions are often tightly coupled. For instance, down-
welling longwave radiation from clouds is a primary driver 
of sea ice surface temperature, which in turn determines 
upwelling longwave radiation, heating the overlying atmo-
sphere and changing the cloud cover. Sea ice model devel-
opment is best performed in a coupled modeling environ-
ment that includes such feedbacks. 

Wind stress is arguably the primary forcing mechanism 
for the ice motion, although the ice-ocean stress, Coriolis 
force, and slope of the ocean surface are also important. 
Coupling between sea ice models and atmospheric mod-
els or data generally employs a quadratic form for the wind 
stress and for the ice-ocean stress term at the bottom of the 
ice. For ridging, modern models use an energy based de-
scription of mechanical redistribution that converts thin-
ner ice to thicker ice under convergence and shear. 

Sea ice albedo is critical for the global heat balance, and 
can be an effective “tuning knob” to produce a realistic 
simulation of sea ice extent. Simple, easily tunable albedo 
parameterizations specify four albedo values: cold snow; 
warm, melting snow; cold, bare ice; and warm, melting 
ice, while others use more complex formulations that take 
into account the ice and snow thickness, spectral band, 
and other parameters. Solar radiation may be distributed 
within the ice column assuming exponential decay (Beer’s 
Law) or via multiple-scattering radiative transfer, in which 
absorptive effects of melt ponds and inclusions such as 
dust and algae can be simulated. 

Sea ice is quite heterogeneous, mostly because of its salt 
content. In many coupled models, a fixed value of sea ice 
salinity is used at the ice-ocean interface, but internally 
the value can vary in time, or the model assumes a vari-
able salinity profile that is constant in time. Newer ther-
modynamic approaches treat sea ice as a “mushy” layer 
of brine and ice [S24], parameterizing its desalination as 
it first grows and then transitions from first-year to multi-
year ice. Prognostic representation of sea ice salinity and 

microstructure is critical for detailed sea ice ecosystem 
models, which depend on the permeability of the ice to 
allow flushing of the brine network by seawater, which car-
ries nutrients into the ice and in turn seeds algal blooms 
in the ocean. 

Melt water collects in depressions on the surface of the 
ice and can drain through brine channels when the ice be-
comes warm and permeable. By cleaning the ice of salt, nu-
trients, and other inclusions, this flushing mechanism can 
affect the albedo, conductivity, and biogeochemical pro-
cesses and thereby play a role in climate change. The sim-
plest pond scheme doesn’t track melt water, but rather de-
creases ice surface albedo under warm, melting conditions. 
As discussed above, other methods track pond area and 
volume for each ice thickness category, to capture the ra-
diative effect of melt ponds. More advanced pond schemes 
that simulate their hydrological influence, such as the de-
lay of internal ice cooling as ponds refreeze in the fall, are 
under development. 
Data assimilation. Sea ice models have developed to a de-
gree that key features of the sea ice cover such as leads, 
ridges, and melt ponds, can be registered in the model 
output. As this model capacity evolves, we can hope to 
be able to predict with some accuracy where and when 
such features may occur. Nevertheless, the best numeri-
cal models may go astray after even possibly short periods 
of time. This model drift is mitigated by the incorporation 
of data from observations into the modeling process. This 
is typically done in two ways: (1) update the state of the 
system in model runs as observational data becomes avail-
able, and (2) learn parameter values from observational 
data. The first is known as state estimation and is carried 
out in real time, while the second process, called param-
eter estimation, is often achieved offline with the use of 
high resolution or more detailed models; both fit under 
the banner of Data Assimilation (DA) [BBC+17]. 

There are three main perspectives on DA, each hav-
ing historical origin in one of: optimization, statistics, or 
control theory. The variational method balances obser-
vational data and model output through optimizing an 
appropriate cost function. In its time-dependent form, 
known as 4D Var, it is the basis of most schemes used 
in weather forecasting today. Nevertheless, most recent 
developments in DA methods have employed a statistical 
(Bayesian), a control theoretic (Kalman Filter based) ap-
proach, or a mixture of both. The key in these approaches 
is generating an ensemble of possible realizations of the 
process by considering slightly different initial conditions, 
parameters, or both. This ensemble of outputs is then used 
as a basis for a covariance in the Kalman Filter approach, 
or a prior probability distribution in a Bayesian method. 
Sea ice presents a number of interesting mathematical chal-
lenges to DA, with more complex models than those of the 
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Figure 10. Simple model of how the ice-albedo feedback affects Arctic climate. (a) The main energy fluxes in the Arctic. (b) 𝐸𝑖𝑛 

(yellow) and 𝐸𝑜𝑢𝑡 (red) in the energy balance as a function of 𝑇. Where both curves meet represent stable and unstable fixed 
points, which are indicated by filled and open circles, respectively. (c) Bifurcation diagram for the temperature as a function of 
the effective emissivity 𝜖. Increasing concentrations of atmospheric greenhouse gases cause a reduction in 𝜖. 

atmosphere and ocean because they account for ice mate-
rial properties. The available data are both more varied 
and less direct. Synthetic-aperture radar data could poten-
tially increase a model’s fidelity to the location of features 
such as ridges and ponds. 

Next generation models, such as neXtSIM [S78] and 
MPM-Ice [S98] have two novel features: they use rheolo-
gies not present in models currently incorporated into 
larger climate models, and more complicated computa-
tional solvers that include a Lagrangian aspect which af-
fords a better accounting for the ice movement and the 
formation of localized features, and, at least in the case of 
neXtSIM, adaptive remeshing. Recent progress has been 
made on the development of a scheme tailored to adap-
tive remeshing [S5]. For any computational scheme, the 
formation of ridges and leads poses a challenge as current 
DA technology can break down in the presence of sharp 
transitions in space or time. 

6. Low-Order Models 
While large-scale numerical sea ice models have increased 
in complexity over time as more physical processes are ac-
counted for, an alternative approach to studying sea ice 
and climate takes another path. This approach consid-
ers relatively simple mathematical models of key phenom-
ena based on low-order dynamical systems and differen-
tial equations, that capture essential physics and provide 
insight into complex behavior, yet are more tractable than 
large numerical models. 
Ice-albedo feedback. We consider a simple picture of the 
influence of the ice-albedo feedback, which can give rise to 
instability, and approximate the mean surface temperature
𝑇 of the Arctic region using a balance between incoming 
and outgoing energy fluxes, illustrated in Figure 10a. En-

𝑑𝑇 
ergy balance can be written as 𝑐 = 𝐸𝑖𝑛 − 𝐸𝑜ᵆ𝑡, where 𝑐 is

𝑑𝑡 
the effective heat capacity [S49]. Then 

(22)𝑐 𝑑𝑇 = (1 − 𝛼) 𝑆 + 𝐻 − 𝜖𝜎𝑇4, 𝑑𝑡 

where 𝑆 = 180 W/m2 is the annual mean incident solar 
radiation in the Arctic region; 𝛼(𝑇) is the albedo, mod-
eled to have high reflectivity (0.6) for cold temperatures
𝑇 ≤ −10∘C and a lower value (0.3) for warmer temper-
atures 𝑇 ≥ 10∘C, with linear interpolation in between; 
and 𝐻 = 90 W/m2 is the heat which enters the Arctic 
through poleward heat transport in the atmosphere. The 
Earth emits electromagnetic radiation to space with a radi-
ant flux given by the Stefan-Boltzmann law, 𝜖 𝜎 𝑇4 , with 𝜎 
the Stefan-Boltzmann constant. Due to the greenhouse at-
mosphere of the Earth, the effective emissivity is 𝜖 = 0.61. 
𝐸𝑖𝑛 and 𝐸𝑜ᵆ𝑡 in equation (22) are plotted in Figure 10b, 
showing three possible steady-state solutions. One has a 
cold ice-covered Arctic, another has a warm ice-free Arc-
tic. These two stable solutions are separated by an unstable 
one. 

An increase in atmospheric greenhouse gas concentra-
tions can be represented in this framework by reducing the 
effective emissivity 𝜖. Varying this causes the red line in Fig-
ure 10b to be scaled vertically, leading to two saddle-node 
bifurcations which are shown in Figure 10c. 

Variations of this simple idea have deep roots in climate 
science, going back more than a century [WE15, S68,S49], 
and there has been renewed interest in recent years due to 
the rapid Arctic sea ice retreat. However, a range of factors 
complicate the picture. First, there are spatial variations 
in the climate system, and the heat transport (𝐻) into the 
Arctic depends interactively on the spatial gradient in tem-
perature. Energy balance models (EBMs) were developed a 
half century ago [S12,S90] to explore such questions. They 
represent the annual zonal-mean surface temperature as 
a function of latitude under solar forcing, the ice-albedo 
feedback, and horizontal atmospheric heat transport via 
surface temperature diffusion. These models have multi-
ple steady states, similar to Figure 10c (see [S68]). 

Second, seasonal variations can be represented by vary-
ing 𝑆 in equation (22) over the course of the year. In this 
case the thermodynamics of sea ice growth and melt be-
come relevant. Recent work used bifurcation theory to 
show that in a seasonally varying model that includes an 
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idealized representation of the ice-albedo feedback, an un-
stable solution bracketed by saddle-node bifurcations oc-
curs, similar to Figure 10c [EW09]. 

Recently, the effect of including both spatial variations 
and the seasonal cycle was explored using an idealized 
model that simulates the surface temperature and thick-
ness of sea ice as a function of latitude and time [WE15]. 
The strength of the seasonal cycle and the horizontal heat 
transport are varied, and both factors have strong stabi-
lizing effects. Including both causes the ice to always be 
stable in climates with the ice edge in midlatitudes or far-
ther poleward, removing the bifurcations and instabilities 
previously encountered. Hence for Arctic sea ice covers re-
sembling modern conditions and future sea ice reductions, 
this study found that no bifurcation should be expected to 
occur due to the ice-albedo feedback. 
Sea ice concentration field. Low-order models can pro-
vide idealized sea ice concentration fields 𝜓 useful in data 
analysis applications. For a region 𝐺, the simplest model 
is perhaps Laplace’s equation, Δ𝜓 = 0, using observations 
on 𝜕𝐺 as Dirichlet boundary conditions. The idealized 𝜓 
solves a steady-state heat equation, so is smoother than 
the actual field subjected to dynamic and thermodynamic 
forcing. 

Figure 11. (a) Laplace equation solution in the MIZ for 29 
August 2010 [S95]. (b,c) Filling the polar data gap with an 
idealized concentration field for 20 June 2013 [SG16]. 

As an example application, 𝜓 provides an idealized sea 
ice concentration field within the MIZ, which is the tran-
sition region between dense polar pack ice and the open 
ocean at lower latitudes (Figure 11a). The width of this 
highly dynamic zone is a fundamental length scale for po-
lar physical and biological processes, and has increased 
39% in the Arctic melt season over the past several decades 
[S96,S95]. The MIZ is in general not geodesically convex, 
but its width can be objectively defined as the arclength 
of streamlines through 𝜓 (black curves, Figure 11a). This 
arclength-based width is objective, unique at each point, 
and invariant with respect to rotation, translation, and co-
ordinate system. 

The idealized field 𝜓 has also been applied to fill in re-
gions where satellite observations are missing or systemat-
ically unavailable, such as the polar data gap (Figure 11b). 

The fill is written 

𝑓(𝜃, 𝜙) = 𝜓(𝜃, 𝜙) + 𝑤(𝜃, 𝜙), (23) 

where 𝜃 is longitude and 𝜙 is latitude, and 𝑤 is a stochastic 
term providing realistic spatial heterogeneity (Figure 11c). 
Boundary conditions for 𝜓 are sea ice concentrations ob-
served on the boundary of the region being filled. The sta-
tistical properties of 𝑤 are determined from variations in 
the actual 𝜓 around the missing data region. 
Conclusions and future challenges. The sea ice covers 
of the polar oceans are in transition and transitions pro-
vide challenges to modeling. A few decades ago the Arc-
tic Ocean was predominantly ice covered throughout the 
summer. At present it is partially ice covered with large 
year to year variability in the amount, and the location, of 
summer ice. Model projections indicate that a few decades 
from now the Arctic Ocean will likely be predominantly 
ice free in summer. The receding ice cover has generated 
increased human activity that requires improvements in 
forecasts and modeling capabilities. 

The complex multiscale nature of the sea ice system 
presents fundamental challenges in applied mathemat-
ics and computation. Homogenization theory and tech-
niques of statistical physics for computing macroscopic be-
havior have been central to advancing mathematical mod-
eling of sea ice. Given the stochastic nature of the sea 
ice system, sea ice models are often cast in a probabilis-
tic framework, which also provides a robust set of tools 
to assimilate the vast amounts of data available from air-
and space-borne platforms, as well as large polar expedi-
tions such as MOSAiC. Methods of dynamical systems and 
bifurcation theory have been successful in framing and an-
alyzing qualitative questions about transitional behavior 
and pattern formation. Finally, substantial effort over the 
past 50 years has gone into, and continues to go into, devel-
oping large-scale numerical models that can predict sea ice 
behavior well into the future. Further development of the 
components of global climate models will need advances 
in high performance computing and learning from data, 
numerical techniques for solving large systems of coupled 
PDE, and mathematical methods to account for the mi-
croscale in macroscale behavior. 
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